The Steady-State Control Problem for Markov Decision Processes

نویسندگان

  • S. Akshay
  • Nathalie Bertrand
  • Serge Haddad
  • Loïc Hélouët
چکیده

This paper addresses a control problem for probabilistic models in the setting of Markov decision processes (MDP). We are interested in the steady-state control problem which asks, given an ergodic MDPM and a distribution δgoal, whether there exists a (history-dependent randomized) policy π ensuring that the steady-state distribution ofM under π is exactly δgoal. We first show that stationary randomized policies suffice to achieve a given steady-state distribution. Then we infer that the steady-state control problem is decidable for MDP, and can be represented as a linear program which is solvable in PTIME. This decidability result extends to labeled MDP (LMDP) where the objective is a steady-state distribution on labels carried by the states, and we provide a PSPACE algorithm. We also show that a related steady-state language inclusion problem is decidable in EXPTIME for LMDP. Finally, we prove that if we consider MDP under partial observation (POMDP), the steady-state control problem becomes undecidable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Utilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs

Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...

متن کامل

Accelerated decomposition techniques for large discounted Markov decision processes

Many hierarchical techniques to solve large Markov decision processes (MDPs) are based on the partition of the state space into strongly connected components (SCCs) that can be classified into some levels. In each level, smaller problems named restricted MDPs are solved, and then these partial solutions are combined to obtain the global solution. In this paper, we first propose a novel algorith...

متن کامل

A Markov Model for Performance Evaluation of Coal Handling Unit of a Thermal Power Plant

The present paper discusses the development of a Markov model for performance evaluation of coal handling unit of a thermal power plant using probabilistic approach. Coal handling unit ensures proper supply of coal for sound functioning of thermal Power Plant. In present paper, the coal handling unit consists of two subsystems with two possible states i.e. working and failed. Failure and repair...

متن کامل

Steady state availability general equations of decision and sequential processes in Continuous Time Markov Chain models

Continuous Time Markov Chain (CMTC) is widely used to describe and analyze systems in several knowledge areas. Steady state availability is one important analysis that can be made through Markov chain formalism that allows researchers generate equations for several purposes, such as channel capacity estimation in wireless networks as well as system performance estimations. The problem with this...

متن کامل

Markov Chain Anticipation for the Online Traveling Salesman Problem by Simulated Annealing Algorithm

The arc costs are assumed to be online parameters of the network and decisions should be made while the costs of arcs are not known. The policies determine the permitted nodes and arcs to traverse and they are generally defined according to the departure nodes of the current policy nodes. In on-line created tours arc costs are not available for decision makers. The on-line traversed nodes are f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013